cases substantially empty). These sites tend to be occupied by elements at and to the right of Mn, and the atoms would be somewhat negative by electron transfer. In the other coordinations the d degeneracy is removed, and d, s, and p orbitals might be expected to hybridize to form directed bonds in the 6-coordinated ligand directions. These sites tend to be occupied by elements at and to the left of Cr and Mo (Kasper & Waterstrat, 1956), with Mo replacing Cr in the higher coordinations because of larger size; these atoms would then be somewhat positive by electron transfer. These considerations will be discussed more in detail elsewhere (Shoemaker, 1960).

Some preliminary single-crystal exploration was done by Dr Clara B. Shoemaker; reference to her photographs materially aided in the establishment of the monocrystallinity of the crystal fragment which we used. Mr Paul Metzger assisted with the refinement of the lattice constants with powder data.

We wish to thank Prof. Paul A. Beck of the University of Illinois for supplying us with R phase specimens and for much helpful assistance and discussion. We gratefully acknowledge the use of the IBM 704 at the MIT Computation Center, and wish to thank Prof. Vladimir Vand of Pennsylvania State University for Programming and operating suggestions. We are also happy to acknowledge the financial support of the Office of Ordnance Research.

References

- ARNFELT, H. & WESTGREN, A. (1935). Jernkontor. Ann. 119, 185.
- BERGMAN, G. & SHOEMAKER, D. P. (1954). Acta Cryst. 7, 857.
- DARBY, J. B. JR., DAS, B. N., SHIMOMURA, Y. & BECK, P. A. (1958). Trans. Amer. Inst. Min. (Metall.) Engrs. 212, 235.
- DAUBEN, C. H. & TEMPLETON, D. H. (1955). Acta Cryst. 8, 841.
- FRANK, F. C. & KASPER, J. S. (1958). Acta Cryst. 11, 184.
- FRANK, F. C. & KASPER, J. S. (1959). Acta Cryst. 12, 483.
- KASPER, J. S. (1956). Theory of Alloy Phases, p. 264. Amer. Soc. of Metals Symposium.
- KASPER, J. S. & WATERSTRAT, R. M. (1956). Acta Cryst. 9, 289.
- KOMURA, Y., SHOEMAKER, D. P. & SHOEMAKER, C. B. (1957). Acta Cryst. 10, 774.
- RIDEOUT, S., MANLY, W. D., KAMEN, E. L., LEMENT, B. S. & BECK, P. A. (1951). Trans. Amer. Inst. Min. (Metall.) Engrs. 191, 872.
- SHOEMAKER, D. P. (1960). Acta Metall. (To be published.)
- SHOEMAKER, D. P., SHOEMAKER, C. B. & WILSON, F. C. (1957). Acta Cryst. 10, 1.
- THOMAS, L. H. & UMEDA, K. (1957). J. Chem. Phys. 26, 293.

Acta Cryst. (1960). 13, 585

X-Ray Diffraction Studies of the δ Phase, Mo–Ni*

BY CLARA B. SHOEMAKER, ALWYN H. FOX[†], AND DAVID P. SHOEMAKER

Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, U.S.A.

(Received 19 June 1959 and in revised form 18 December 1959)

Single-crystal X-ray diffraction studies of the δ phase, Mo-Ni (61·1 weight percent Mo) have shown that it is at least pseudotetragonal, with $a_0 = 9 \cdot 108$, $c_0 = 8 \cdot 852$ Å, and extinctions suggesting space group $D_4^{\epsilon}-P4_22_12$. There are, however, a few cases of differing intensity between (*hkl*) and (*khl*), indicating a reduction of the true Laue symmetry to D_{2h} ; the true space group is perhaps $P2_12_12$ or $P2_12_12_1$. The (0*kl*) and (*h*0*l*) weighted reciprocal lattice nets closely resemble the (*hk*0) net of the σ phase. All attempts to determine the structure in detail were unsuccessful.

Introduction

In connection with work in these laboratories on the crystal structures of the P phase, Mo-Ni-Cr (Shoe-maker, Shoemaker & Wilson, 1957) and the R phase Mo-Co-Cr (Komura, Sly & Shoemaker, 1960), we undertook to investigate the crystal structure of the δ phase, Mo-Ni, discovered by Ellinger (1942). This

phase appeared to be closely related to the σ phase (Bergman & Shoemaker, 1954) and to the *P* phase, as was demonstrated clearly in the work of Beck and coworkers (Rideout *et al.*, 1951) who found σ , *P*, and δ phase regions arranged in a roughly linear row on the Mo-Ni-Cr phase diagram at 1200 °C. The δ phase in the Mo-Ni system exists at the approximate atomic ratio 1:1, in the range 61 to 63 weight percent molybdenum.

Experimental

A specimen of this alloy, annealed at 1200 °C., was kindly supplied by Prof. Paul A. Beck of the Univer-

^{*} Sponsored by Office of Ordnance Research. Computations were done in part at the MIT Computation Center, in part on X-RAC at Pennsylvania State University.

[†] Present address: Mullard Research Laboratories, Salfords, Redhill, England.

Table 1. X-ray powder photographic data for δ -MoNi

hk.¢	m ² 100	1 d _{calc}	1 [#] obs	1 d _{obs}	hk.£	mF ² 100	1 d _{calc}	i _{obs}	1 d _{obs}	hk.	$\frac{\mathrm{mF}^2}{100}$	1 d _{calc}	ⁱ obs	d _{obs}
202	8	.3151	-		514 216	70 18	.7195	vf	.7214	821 742	69 12	9124 9136	W	.9140
221	(•3305	_		415	26	.7239)		7016	812	106	.9136		
515	9 6	-3330			533	83	.7244	VW	•7240	724	20	•9182	_	
310		•3412			335	20	•7321			635	58	.9282		6 0 0 l
103	10	.3702	-		630	28	•7365	vſ	•7345	427	73	.9308	w	•9324
112	12	• 307L	_	271.9	542	74	•7385	f	•7386	822	26	.9332		
300	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-3120	w 0	•3/40	524	48	.7442		a).ca	218	13	.9365		
320	~~~	• 3979 300h	VI	• 399 (226	120	7456	v	• (47)	830	11	.9381		
201	9	•3994 haa6)			425	56	.7484		71.01.	831	97	.9449)		
312	35 97	4110	m	.4142	613	14	.7489	v	• (404	606	61	-9452	¥	.9462
213	13	.4185			632	37	•7704	٧ſ	•7709	(43	39	•9419		
400	10	.4392	vſ	.4388	701	18	.7768			751	20	9512	f	.9527
410	11	.4527		1.500	543	19	•7805	—		616	82	.9516		.,, .
322	290	4558	s	.4537	534	185	•7836	m	•7 ⁸⁴ 1	228	29	•9556		
104	9	4650			711	18	.7846	_		626	25	•9704	-	
411	145	.4666	m	4675	326	24	.7849			752	23	.9712	f	.9724
303	41	4726	vſ	4743	505	31	.7877	vſ	.7900	645	37	.9726		
114	286	4778		10	640	46	•7918	—		546 725	52 18	.9765	f	. 9787
331	11	4793	шw	.4801	515	136	•7953	vw	•7963	814	18	.9878	_	-00-
313	528	.4852	VS	.4875	720	16	•7993		-	841	80	.9885	r	. 9887
420	198	.4910	щw	.4916	641 702	109 133	.7998	w	.8007	833	25	•9974	vſ	•9975
421	22 9	5039	77C	5042	614	16	8064	_		753	65	1.0035	f	1.0039
412	22	. 5060 ∫	1111	.)042	721	50	8073			735	25	1.0091	vſ	1.0061 ?
214	15	•5143	_		552	29	.8086	m	.8083	418	29	1.0108	—	
332	119	.5177	w	.5183	712	166	.8086			824	15	1.0119	-	
323	44	.5211	-		633	19	.8108	—		760	47	1.0123	f	1.0111
422	62	.5405	vw	.5410	525	36	.8177	vſ	.8180	761	24	1.0186	vſ	1.0185
430	27	•5490	vſ	.5503	612	22	.0201 J			921	16	1.0186	••	1.010)
413	11	.5655	—		217	15	8280			912	10	1.0196		
314	38 14	.5698	f	•5712	624	11	8285			119	35 31	1.0285	f	1.0310
20/1	12	6007			722	18	8307			607	19	1.0292	-	
527	11	6212		6310	510	10	8257			556	10	1.0306]		
441	15	666	*1 17f	6468	1,26	30	8270		8285	843	16	1.0389	۲ſ	1.0368
22) 531	10	6501	•1	.0400	721	75	83h8	v1 vrf	8450	209	35	1.0401		
100	20	.0,01	 111	6610	552	18	80,71	VI	.04)0	754	15	1.0470	vſ	1.0489
442 F20	~	6780	**	6780	2027	201	8406		8517	726	10	1.0400)		a ocho
732 502	20	-0109	41	•0109	525	104	-0490 8528		.0511	627	23	1.0524	VI	1.0542
523	10	.0015		6010	232	14	•0730 971-7		9755	508	10	1.0574		1 0(00
325	20	.0097	VI	-0919	71.2	19	•0(4)	VI	•0122	518	27	1.0631	vr	1.0905
621	11	.7035			811	30 13	.8924	vf	.8913	932	18	1.0658		
612	13	• (U) JI	_		625	58	8951	f	.8970	923	15	1.0675	vſ	1.0666
434	14	•7110}			714	13	.8983	-		319		1.0743	_	
504	75	.(IIIO)			545	13	.9018	_		528	26	1.0800	vſ	1,0791
206	20 40	7125	vf	.7142	802	78	.9070	f	.9068					
		•		* s =	strong,	m = med	ium, w = 1	weak, f	= faint, v	= very				

sity of Illinois. As with the other phases mentioned the material was microcrystalline, and it was necessary to pulverize the material and examine many small fragments by Laue photography to find a single crystal. The monocrystalline fragments finally used were about 0·1 mm. in size. With Laue, Weissenberg, and precession photographs the Laue symmetry and lattice constants were obtained. The lattice constants were later refined with powder data (Table 1) by the method used by Shoemaker, Shoemaker & Wilson (1957), giving $a_0=9\cdot108\pm0\cdot005$, $c_0=8\cdot852\pm0\cdot005$ Å. The $mF^2/100$ values given in Table 1 were calculated from single crystal observed intensities. Planes too weak to contribute significantly are omitted.

The Laue symmetry at first appeared to be D_{4h} ,

but significant intensity differences were found for a small number of weak and medium reflections (most noticeably at small Bragg angles, but present also at larger angles) indicating a reduction of symmetry to D_{2h} . In nearly all of our subsequent work these deviations were neglected, and averages of (hkl) and (khl) intensities were employed where necessary. No deviation from tetragonal symmetry was observable in the axial lengths. The intensity deviations do not appear to be due to absorption; two different crystal fragments gave similar results.

The percentage of molybdenum was found by analysis to be $61 \cdot 1 \pm 0 \cdot 3$ weight percent. The density was found to be $9 \cdot 71 \pm 0 \cdot 01$ g.cm.⁻³ with a pycnometer. These figures lead to $55 \cdot 8 \pm 0 \cdot 2$ atoms per unit cell. This strongly indicates 56, but low values found for the P and R phases (presumably due to slag inclusions) suggest that 57 or 58 are also possible.

Fig. 1. Weighted reciprocal lattice nets of δ , σ , and P phases. Relative intensities are indicated qualitatively by the sizes of the dots.

The lattice is primitive. All odd (h00), (0k0), and (00l) reflections are absent. (Of the (00l) reflections only (004), (006), and (0,0,12) were observed within the copper limit.) These results suggest the space group (assuming the tetragonal system)

$D_4^6 - P4_2 2_1 2$.

Strong indications of a close structural relationship between the δ and P phases were shown, not only by the lattice constants, but also by the fact that the (0kl) and (h0l) weighted reciprocal nets strongly resemble the (hk0) net of the sigma phase. This is shown in Fig. 1. The (hk0) net looks very different; its strongest plane is (420).

Three-dimensional Patterson functions were calculated with three-dimensional Cu $K\alpha$ Weissenberg data. A function calculated on the IBM 704 (program written by W. G. Sly) with orthorhombic intensity deviations taken into account differed only in very minor respects from one calculated earlier on X-RAC with coefficients conforming to tetragonal symmetry. Characteristic features of the Patterson function include: (1) very strong peaks at $(\frac{1}{2}, \frac{1}{2}, 0)$ and $(0, \frac{1}{2}, 0.15)$, with magnitude close to half that of the origin peak; (2) absence of peaks along $(x, x, 0; x \neq \frac{1}{2})$ and of any but weak peaks along (x, 0, 0), implying absence of vertical mirror planes, in agreement with the above provisional space group; (3) strong peaks belonging to superimposed slightly distorted hexagonal nets (as in the σ phase), the net planes being tipped about 15° from the vertical positions occupied by (100) and (010).

All attempts to elucidate the structure in detail have been unsuccessful. These include use of the Patterson superposition (vector convergence) method to locate some atoms provisionally, computations of electron-density functions in three dimensions to find more atoms, and attempted least-squares refinement of trial structures. Many attempts to build up a reasonable trial structure out of known coordination polyhedra have also failed. These failures suggest that the assumed space group is not correct, and perhaps also that the observed deviations from tetragonal symmetry need to be taken seriously.

If the true structure represents a small orthorhombic deviation from an 'ideal' tetragonal $P4_22_12$ structure, the true space group could be the subgroup $P2_12_12$. However, if the deviations are in the atomic positions (rather than in occupancy by various atomic species in various sites), one would expect deviations in intensity between (hkl) and (khl) to increase with scattering angle. Perhaps the structure deviates not slightly but considerably from tetragonal symmetry (having perhaps space group $P2_12_12_1$), but is intimately and interpenetratingly twinned.

Work on this problem has been stopped for the present.

We wish to thank Prof. Paul A. Beck of the University of Illinois for supplying us with specimens and for helpful suggestions. We are indebted to Dr William G. Sly for programming and computational assistance with the IBM 704 calculations, and Prof. Ray Pepinsky of Pennsylvania State University for his cooperation in regard to the use of X-RAC. Analytical and density determinations were made by Mr Frank C. Wilson, and powder-data calculations by Mr A. D. Pearson.

We gratefully acknowledge financial support from the Office of Ordnance Research, and the use of the facilities of the MIT Computation Center.

References

- BERGMAN, G. & SHOEMAKER, D. P. (1954). Acta Cryst. 7, 438.
- ELLINGER, F. H. (1942). Trans. Amer. Soc. Met. 30, 607.
- KOMURA, Y., SLY, W. G. & SHOEMAKER, D. P. (1960). Acta Cryst. 13, 575.
- RIDEOUT, S., MANLY, W. D., KAMEN, E. L., LEMENT, B. S. & BECK, P. A. (1951). Trans. Amer. Inst. Min. (Metall.) Engrs. 191, 872.
- SHOEMAKER, D. P., SHOEMAKER, C. B. & WILSON, F. C. (1957). Acta Cryst. 10, 1.